R-20

Rajeev Gandhi Memorial College of Engineering & Technology Autonomous

NANDYAL-518501

II B.Tech II-Semester - Mid-II Examinations **Subject Name:Network Theory Branch:EEE**

Time: 2 Hours Max. Marks: 20 Date: 30-06 -2022

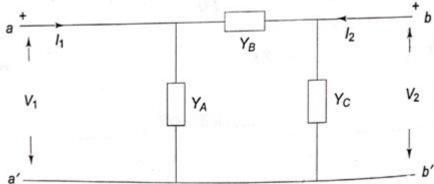
Note: 1. Answer first question compulsorily. $(5 \times 1 = 5 \text{ Marks})$

2. Answer Any *THREE* from 2 to 5 questions. $(3 \times 5 = 15 \text{ Marks})$

Q.No		M	СО	BL	
Q.1 a)	Define Natural response and Forced response.	1 M	CO4	BL1	
b)	Write the conditions of Symmetry and Reciprocity for ABCD		~~ =	DI O	
	and h. Darameters	1M	CO5	BL2	

c) Define voltage Transfer ratio.

and h Parameters

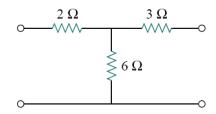

CO₆ BL₁ 1M

d) Design a low pass Π -section filter with a cut off frequency of CO6 BL3 1M 2 KHz to operate with a load resistance of 400Ω .

e) Define Port

CO₅ BL₂ 1M

Q.2 a) Find the short circuit admittance parameters for the circuit **3M** CO5 BL2 shown in Figure.



b) Express h parameters in terms of ABCD parameters

2M CO5 BL1

- Derive the inter relationship of Z in terms of Y, ABCD in **3M** CO5 BL3 Q.3 a) terms of Y parameters.
 - **b)** Find the Hybrid Parameters for circuit shown.

2M CO5 BL1

- **Q.4 a)** Design a band elimination filter having a design impedance of **3M** CO6 BL1 600Ω and cut off frequencies f_1 =2 KHz and f_2 =6 KHz.
 - **b)** Explain in detail about classification of Filters

2M CO6 BL2

Q.5 Determine the solution for the current when switch is closed **5M** CO4 BL1 at Φ =30 degrees for a series RL circuit. Voltage V=50cos (100t+ Φ) volts is applied at Φ =30. Resistance R=150 Ω and L=0.5H.